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.ABSTII.ACT

A theoretical method for calculating second-order supersonic wing-body

interference pressures is reviewed. Experimentally measured pressures on

wings attached to cone-cylinder bodies are presented for Mach numbers of

3, 4, and 7, and the results compared with theoretical pressures which include

second-order interference effects. It is seen that these effects appear at M = 3,

become important at M = 4 and are large at M = 7. The interference theory

gives very good results at Mach numbers of 4 and 7. The flow field round a

blunt-nosed body is measured, prior to a study of the effect, on the pressure

on a wing situated in this flow field, due to the entropy gradient generated by

the body. A measured distribution over the wing is given, and compared with

theoretical pressures which include contributions due to entropy gradient.

The entropy gradient effect is found to be appreciable but not fully accounted

for by the theory.

INTRODUCTION

Before the lift on the wing of a wing-body combination can be calculated

with a reasonable degree of accuracy for high Mach number flight, various inter-

ference problems nmst be considered. First-order interference effects have been

the subject of several papers which amply cover the problem, so this particular

aspect can be considered solved and not requiring further attention. However,

as Mach number increases, second-order interference effects become important.

Also, with blunt-nosed bodies the flow over the wing is highly nonuniform and

the influence of this nonuniformity on wing pressures may be important. In

order to concentrate on the second-order problem, all wing-body combinations

considered in this paper have nonlifting bodies. This means that the influence

of first-order interference over the wing is restricted to the area between the

wing root and the Mach line emanating from the leading edge of the wing-body
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juncture. This region is small at high Mach numbers, and it is the remaining
major part of the wing that will be considered here. Second-order wing-body
interference will be considered first and experimental results will be compared
with values calculated from the theory (lue to Landahl and Beane.' Then, the
non-uniform flow about a blunt body at high Mach number will be considered
with regard to the effect on the wing pressure of the entropy gradient existing in
the flow. All results are for wings with sharp leading edges.

SECOND - ORDER WING - BODY INTERFERENCE

For the region on a wing outside the area of first-order interference influence,
first-order theory gives the result that the velocity potential is the sum of the
potentials (13,, and 'DB due to the wing alone and the body alone respectively.
However, as Mach number increases the second-order potential becomes im-
portant and Landahl and Beane show that the solution for the second-order
potential includes an interference term due to cross products of wing arid
body first-order potentials, which occur in the linear differential equation for 0.

Thus, 43 can be written as

CID = (1' cDB )

where oi is the interference part. Considering the expression for pressure
coefficient,

Cp = — 243, + 024),2 — — (2)

where (1, = + is the full velocity potential, it is seen that the term (32,1),2
becomes appreciable at high Mach numbers. This term produces cross products
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Fig. 1. Chordwise pressure distribution at M = 3.
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of wing and body potentials, and, together with the terms due to cipl,add up to
give the interference pressure coefficient p when p is expressed as,

(!p — CCpB C (3)


Landahl and Beane give the simplified result that

= /1/2(7 (4)

which, on using the linearized piston theory approximation

1
sow, = — (5)

beconles

Cp, = — 3/(7 psoa,"' (6)

where w is the upwash on the wing surface. In Eq. (1) theoretical values for p

which include interference effects are compared with results obtained from wind-

tunnel tests at Mach numbers of 3 and 4 on wing-body models with wings at
zero incidence. Theory and experiment have been compared, Eq.  (2),  at the

same Mach numbers, but with wings at incidences in the range 00 to Ur. In the

theoretical calculations, boundary-layer displacement thickness was accounted

for in the values of Cpa., and in order to find pi, the approximation

1 r,
(pB, = —  5  p (7)

was used. Typical results for the chordwise pressure distributions are shown in

Figs. 1 and 2 for Mach numbers of 2 and 4 respectively. In these cases the wings
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were of triangular planform and had maximum thickness at the trailing edge,

the bodies being of cone-cylinder form. Due to the position of the wings in the

body fields, the largest interference effects were on the outer part of the wings.

The spanwise positions of the chordwise pressure distributions are indicated in

the figures. It is seen that at  M  = 3 the experimental results lie more or less

between the theoretical results which include and exclude the interference part.

However, at  M  = 4 the theoretical results including interference agree well

with experiment, except near the trailing edge, where there is probably some

pressure "leakage- from the trailing edge through the boundary layer. It is

indicated in Eq. ('2) that the interference theory is most accurate at higher

Mach numbers and for lower sweepback angles of the wing, due to simplifying

assumptions made in the theory. More recently, wind-tunnel tests have been

performed on a model at  M  = 7.3 in the' FFA hypersonic tunnel. At this high

Mach number, Eq. (7) becomes rather approximate, but can be improved upon

by a more accurate form. From Eq. (q.) it can be seen that a close approximation

to pi, is given by

Cp„ =
— 2 90B,  02ç0B,2

This equation then gives

= p —( 1 + o2(1, „ )1 (8)

which of course reduces to Eq. (7) when  02Cp1 << 1. Eq. (8) also becomes a.

rather rough approximation at high Mach number and high incidence, as it

comes from combining the two approximate relations

and

=

CP/I-

The second of these comes from the full piston theory result

2w 4- 1 2
-F

+ 1 "13
CPW m 9 w -tv"

Obviously for a wing at high incidence and high Mach number, the second and

third terms in Eq. (11) are both very important on the pressure surface of the

wing where w is large. Thus, whereas Eq. (.5) is a valid approximation at Mach

numbers of 3 and 4, it is no longer so at  M  = 7, especially for a wing at incidence.

Eq. (9) can be replaced by a more accurate form as was done in the body field

case, giving

1L 2
4ll = [ + 02('/' „,) (12)
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where can be calculated from Eq. (11). In fact, Cp,„ was calculated by

Bertram's method' which is a method of two-dimensional wings and includes an

approximate allowance for boundary-layer displacement thickness. Pressure

coefficients calculated by this method are compared in Figs. 3 and 4 with ex-

perimental values. Also shown are theoretical values obtained front Eq. (11)

with w adjusted to include boundary-layer effects calculated according to

Bertram. Bertram's method is seen to give good results, whereas piston theory

fails at high incidence (which is of course to be expected). Bertram's method

was thus used for all calculations of Cr„., and Cr, was calculated front Eqs.

(4), (8), and (1.2). Pressure coefficients calculated in this way are shown in Fig.

3 for an outer section on the pressure surface of the wing at 10° incidence. The

results are compared with experiment and also with theory, using Eqs. (6) and

(7) for Cv„ and are seen to agree well with experiment. It is also shown that the

more accurate expressions for (pa-, and soR, give better results. It should however

be noted that the errors which arise through the use of Eqs. (5) and (7) tend to

cancel each other to a certain extent as Eq. (5) underestimates (1, w  r and Eq. (7)

overestimates çonf Again, interference was found to be greatest over the outer

part of the wing and pressure distributions along two chordwise sections are

given in Fig. 4 for various angles of incidence. As interference pressures on the

upper surface of a wing at incidence are very small, the interference pressure

on the lower surface can be taken to be the lifting pressure due to interference.

The importance of interference effects and the accuracy with which they can

be predictedisevident.
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THE FLOW ABOUT A BLUNT-NOSED BODY OF REVOLUTION


AT HYPERSONIC SPEED

For a wing-body combination with a blunt-nosed body, traveling at high
Mach number, there will be an entropy gradient in the radial direction (with
respect to the body) due to the large curvature of the body shock. Thus, for a
radially mounted wing there will be a spanwise entropy gradient along the wing.
If the entropy gradient effects are large, it may be that the methods discussed
in the first part of this paper will no longer be sufficient for an accurate deter-
mination of the wing pressure. With this in mind, an investigation was under-
taken to discover the magnitude of entropy gradient effects. This model chosen
for the investigation was a hemisphere-cylinder body with a radially mounted
wing of wedge section. Wind-tunnel tests were made in the FFA hypersonic
tunnel at a Mach number of 7.3. In order to calculate the separate wing- and
body-field pressures, so as to be able to find the entropy gradient effect, it was
necessary to study the body-field flow. This was done experimentally, and the
static pressure and Mach number distributions were calculated from pitot tube
measurements anti the body shock shape. As the determination of the body
field is thought to be of interest, a few details of the method employed and the
results obtained are given here. The whole of the body-field flow (except of course
the region at the nose) is supersonic, so a shock wave forms ahead of the pitot
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tube which then measures the stagnation pressure behind this shock. The

Mach number can be found, provided the stagnation pressure ahead of the

pitot shock is known. To find the stagnation pressure ahead of the pitot
shock, it is necessary to know the point at which the streamline, along

which the pitot tube is positioned, crosses the body shock. The stagnation pres-

sure can then be calculated from the oblique shock relations, taking the shock

slope from a schlieren photograph. Thus the problem now is to find a relation

between the radial positions  I.;  of the pitot tube, and  r8i  of the point of the body

shock at which the streamline crosses the shock, where  r  is measured from the

body axis. Remembering that there can be no flow across streamlines, the axial
continuity of mass flow gives the following integral relation:

=  2  f
P2U2r dr
p.U.




where  rb  is the body radius and the subscripts 2 and denote conditions just
ahead of the pitot shock, and free stream respectively. The ratio of density-

velocity products can be written as

(1 4_ ."), —
1 I f 2 2(i+yo1f-Y-

P2U2312- ' 2 — '7 Pui '''
p.U. M .7 — 1 2 
1 + 312

2
(

p )211, ( pi )21

Pi P



where the subscript I denotes conditions immediately behind the body shock.

The last three terms in Eq. (14) can be found from oblique shock relations

provided  r8i  is known. M2 can be calculated from the measured stagnation
pressure and r8f Obviously the only way to calculate. M2 and p2 is a step by

step iterative process along a radial line, starting at the body surface. Starting

at a point close to the body surface,  r„,  is estimated and from this a value of

pop which is also the stagnation pressure ahead of the pitot shock, is found.

Using this value of  p„,  together with the measured stagnation pressure M2 can

be calculated. The static pressure p2 can then be obtained from M2 and  Po,.

Now, the integrand in Eq. (13) can be evaluated, and assuming the static
pressure to be constant in the region close to the body, the integrand can also

be evaluated at the body surface  "b"  as obviously r8b = O. A new value for  r„

can now be found by graphical integration according to Eq. (13), the calcula-

tions being repeated until the values of 7.81converge. The final values of M2

and  p2  can be obtained before moving on to the next point. The final point of

evaluation on the section is the intersection "n" with the body shock. Here

the integrand can be evaluated directly from oblique shock relations and then

the graphical integration, using all the previously calculated integrands, should

give a value of r8 equal to  N.  This provides a useful check on the calculations.,
Seiff and Whiting' give a method for calculating the downstream flow about a
blunt body of revolution with calculations based on bow shock shape and blast-
wave theory. They assume that the radial pressure distribution between the
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body and the shock can be obtained from blast-wave theory by using the
similarity relation

Pb — pb  where

pn is the pressure at the shock wave on the section of evaluation. This
method, however, can only be used well downstream of the body nose, whereas
the technique described above can be employed much nearer the nose, the
insensitivity of the pitot tube to moderate flow inclinations being a useful
property. Radial distributions of pressure coefficient are shown in Fig. 5 for
various positions "1.- downstream of the nose. In the figure, .1- is nondimension-
alized with respect to the body diameter d. Also shown are the pressure coeffi-
cients given by blast-wave theory. It is seen that there is considerable difference
between the results, but agreement improves as z increases. However, it should
be pointed out that the pitot method results have not been corrected for wind-
tunnel flow nonuniformities. Such corrections would probably not have been
very large, but anyway they were not necessary in the investigation .of the pres-
sure distribution over a wing placed in the body field. All that was required was
the net body field, its composition being irrelevant. Also, the body used was
not a full body of revolution as almost half was removed (see Fig. 6) for tunnel

p(r) — pb _ [p(r) pb

1.w.

X— 0.7

0.3 Pitot Method

— — — Blast Wave

7 =1.64

= 2.30

0.5 1.0 1.5

(15)

0.2

0.1

Fig. 5. Radial pressure distributions for body at M = 7.3.



WING-BODY INTERFERENCE EFFECTS 823

•

Fig. 6. Model einifiguration for entropy gradient test.

blockage considerations. This resulted in the shock shape close to the stagnation
point being slightly different from that for a full body of revolution. The flow

close to the body was thus slightly different from that around a full body.
Having determined the body field, a position was chosen in which to mount

a straight wing of wedge section on which could be measured a chordwise pressure
distribution. Knowledge of the body field was also required to provide infor-
mation necessary for the attempt to calculate theoretically the effect of the
entropy gradient. The aim of the theoretical approach was to find an expression
for the contribution Cp to the total pressure coefficient, which was due to the
entropy gradient. It would then be possible to express the full pressure coefficient

as
CP - CP11. + CPB CP,

where Cp,C pi, and Cp, can be calculated by the method mentioned previously.

THE EFFECT OF A SPANWISE ENTROPY GRADIENT ON THE

PRESSURE ON A WING

The case of a thin infinite wing in supersonic flow with a spanwise entropy
gradient has been studied theoretically. An entropy gradient is assumed to be
introduced in the y-direction across a uniform parallel flow of velocity U0,
resulting in a parallel flow of velocity tr,, u1(y). The flow over the wing situated
in the nonuniform flow with its span along the y-direction is then considered.

Denoting the perturbation velocity components over the wing by u, r, and w

in the .r,y, and z directions respectively, where the direction of the free-stream
flow is in the positive x-direction, Crocco's equation is shown to produce the
following three equations:

av au) tu Ow)_ 0— — — — wax ay az—

aw ay (—ay au)du

	

w (-ayi —— (U0 + + u)—— u — 1ax ay dy

au awaw av du av
(uo".u)— -(17-)( ay az)dy 1 o  -197Z
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It is assumed that  u  and w will differ only slightly from their values in the
two-dimensional case, and that it is still possible to write

au aw Û
az 8x "

(19)

Then,  u  and ?I» are expressed as differentials of a potential function ED which is
the normal two-dimensional potential plus an extra second-order term 0, due
to the entropy gradient. Equations (16) to (19) are then solved for  r,  which is
expressed in terms of the first-order solution ,,e) to ED, and the change in pressure
coefficient C p. is given in terms of  r  and The expression obtained for  r  can
be written

	

uo + )4,32w. + 1) +
do

(20)

where X = (1/U0 +  u1) (du/dy) 1  which is considered constant.
In order to calculate  (10/dy  in the flow ahead of the wing, it is assumed in Ref.

5 that

p(Uo u1) =  ('onst.

This could be trite for a two-dimensional case provided the streamline spacing
was the same before and after the entropy discontinuity. However, the case of
an entropy discontinuity due to the shock produced by a body of rotation is
not quite so simple, as the radial distance of the streamlines from the axis of
symmetry must be considered, requiring a continuity equation of the type
given in Eq. (13). It was found in the body-field investigation that the gradient
of  0  was

— = 0.150
dy

Calculations showed that 4), was, in fact, negligible so that the pressure coeffi-
cient part due to the entropy gradient was simply

cp, =
0

2

	

u0 111 


P ' ( U0 +V ttl) ( U0 ) 2

which can be written approximately as

cP 1 + 95,B)2
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The entropy profile across the flow was calculated from the shape of the body

shock and the streamline pattern round the body. Then, the parameter X was

found from the slope of this profile using the relation

1  dS
X =

312R dy

where M is the local Mach number and R the gas constant. The variation of X
with y is shown in Fig. 7 where it is seen to be constant over a large portion of the

wing span. Cp was calculated according to Eqs. (20) and (21), and the full

theoretical pressure coefficient is shown in Fig. 8, where it is compared with the

experimental values. The experimental values are seen to lie well below those

given by theory excluding entropy gradient effects. Even when these effects are
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included in the theory there is still a large difference between theory and
experiment. The method for obtaining  Cpu,  and  Cp,  has been shown to be fairly
accurate and the procedure for finding CpB should give good results. So, the

difference between experimental results and the theory without entropy gradient
effects can be taken as a fair measure of the true entropy gradient effects. This
shows the theoretical determination of to be rather inadequate and that an
improved theory is required. Since this difference between theory and experi-
ment arises it is probable that the assumption that the velocities si and  r  over

the wing have almost their two-dimensional values is not quite true.

CONCLUSIONS

Second-order wing-body interference begins to affect the wing pressures at

about  M  = 3 and at  M  = 4 it can be important, especially for wings at inci-
dence. At a Mach number of 7 the interference pressure can be very large.
The second-order interference theory gives very good results at Mach numbers

of 4 and 7, the accuracy of the results at  M  = 7 indicating that the theory is
valid at even higher Mach numbers. In the case of a blunt-nosed body, when an

entropy gradient is generated across the flow field in which the wing is situated,
there appears to be a considerable contribution to the wing pressure due to the
entropy gradient. This contribution is not satisfactorily accounted for by the
theory used, and an improved theory is required before an accurate deter-
mination of the total wing pressure can be made.
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